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The evolution of Al
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Current research in Al

—>< Symbolic Intelligence )

— Supervised Learning
— Semi-supervised Learning
—»  Unsupervised Learning
—>» Reinforcement Learning

— Deep Learning

—) Transfer Learning

— Parallel Learning

—) Hybrid Learning Methods
—»  Adversarial Learning
—) Ensemble Learning

—) Statistical Learning Methods
—) Classiﬁcatiqn/Clustering

—»(  Planning & Scheduling )

=at Expert Systems )
% —»(  Multi-agent Systems )
%ﬁ —»(  Computing Intelligence )
% ~ +»( Fuzzy Logic & Rough Set )
& »(  Machine Learning ~ —
3 —»( Knowledge Representation )
< :

—»(  Recommender Systems )

—»(  Robotics & Perception )
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Basis of machine learning

Items

Origin

Graphical
representation

Central idea

Research issue

Favored
algorithm

Representative
algorithm

Representative
application

Representative
figure

T

Cognition is computing use
symbols, rules, and logic to
represent knowledge and draw
logical inference (prediction of
results).

Knowledge structure

Rules and decision trees

Inverse deduction algorithm

Knowledge map

Tom Mitchell, Steve Muggleton,
and Ross Quinlan

MichiganEngineering

Assess the likelihood of
occurrence for probabilistic
inference, modify the
occurrence probability, and
make optimal decisions.

Uncertainty

Naive Bayes or Markov

Probabilistic reasoning

Anti-spam, probabilistic
prediction

David Heckerman, Judea Pearl,
and Michael Jordan

Recognize and generalize
patterns dynamically with
matrices of probabilistic,
weighted neurons (simulate
the brain).

Credit assign

Neural networks

BP algorithm and deep learning

Machine vision, speech
recognition

Yann LeCun, Geoff Hinton,
and Yoshua Bengio

Generate variations and then assess
the fitness of each for a given
purpose with genetic algorithm
(GA) and genetic programming.

Structural discovery

Genetic programs

Genetic programming

Starfish robot

John Koda, John Holland, and Hod

Lipson

Tribes
Symbolists Bayesians Connectionists Evolutionaries Analogizers
Logic theory, philosophy Statistics Neuroscience Evolutionary biology Psychology
Animals Cell Body R
Likelihood | Prior ¢
Posterior |Margin Synapse
Mammals Birds

Optimize a function in
light of constraints
(similarity between
old and new
knowledge).

Similarity

Support vectors

Kernel machine,
nearest neighbor
algorithm

Netflix recommender
system

Peter Hart, Vladimir
Vapnik, and Douglas
Hofstadter
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Power system applications of Al (1)

Load forecasting (short- and long-term).
Short-term forecasting of wind and solar.

Fault diagnosis and condition monitoring.

— Generators, transformers, high-voltage circuit breakers,
power electronic converters.

Security/reliability assessment.

— Moving beyond N-17 reliability.

— Decision-making at scale and high complexity.
— Stability assessment.

|dentifying cyber and physical attacks.

— Intrusion detection in power system information networks.

Electricity markets.
— Determine bidding strategies for energy markets.
— Assess market power.

MichiganEngineering
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Power system applications of Al (2)

* Feedback controls.
— Generator and motor controls.
— Voltage/reactive power controls.
— Automatic generation control (AGC).
— Microgrids and multi-energy systems.
— Estimating ensemble characteristics.
— Baseline estimation.

- Consumers.
— Thermostats that learn occupancy patterns.
— Other applications and opportunities?

MichiganEngineering
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Power system data

* Vast numbers of participants create vast amounts of
highly distributed data.

« Heterogeneous (multiple forms, multiple time scales).
* Asynchronous.

* Noisy.

* |Incomplete.

* Low value density.

- Difficulties in collecting, storing, processing, mining.
* Privacy concerns.

MichiganEngineering
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Case studies

* Reliability assessment.

- Baseline estimation.

- Estimating ensemble characteristics.

* Cluster-based chance-constrained optimization.

« Corrective model predictive control.
— Not actually Al but a competing technology.

MichiganEngineering
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Reliability assessment (1)

* This section is based on notes from Louis Wehenkel.

Requirement:

— At sub-second temporal resolution, balance generation,
consumption and storage, whilst satisfying network
constraints, in spite of various threats.

Threats:

— Unanticipated variations of generation and/or demand,
weather conditions.

— Component failures, human errors, adversarial attacks.
Problems to avoid:

— Component overloads, voltage and/or frequency excursions.

— Cascading overloads, instabilities, blackouts.
* Aim:
— Optimization and control closer to real-time.

MichiganEngineering
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Reliability assessment (2)

Every 5 minutes, for the real-time system state z,., assess
the risk induced by contingencies.

- Based on data and models:
— C(zrt), me(rt, ¢) : set of contingencies and their probabilities.
—  fer(xre, ¢) : measure of the severity of contingency c in state z.;.
« Assess the expected impact of possible contingencies:
— E{ferlzre} = 2 cec(a,,) Te(@rt, €) fer(Tre, €)
- expected cost of service interruptions.

— P{fcr > n‘xrt} — chc(xrt) 7Tc(xrta C)l(fcr(xrta C) > 77)
- probability of large service interruptions.

MichiganEngineering
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Machine learning

Background:

— The evaluation of the contingency response function fer (¢, c)
is generally computationally expensive.

— Even so, this function is evaluated as often as pOSS|bIe by the
TSO, yielding growing datasets D = {(z%,,c"), for (2%, ") Vi,

Supervised machine learning:
— From a sample of input-output pairs {(z*,y*)}"_,, we can
learn a function h(-) such that |h(z) — y| is small on average.
* Application to real-time reliability assessment:
— Learn a regression proxy: hyegr(Trt,c) = for(Trt, €)
— Learn a classifier proxy:  hejass(zrt,¢) = 1(fer (xre,¢) > 1)
* The underlying assumptions are:
— h-proxies are much faster to evaluate than f..(x,+,c) .
— ltis possible to learn sufficiently accurate i -proxies.

MichiganEngineering
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Machine learning considerations

How often to apply ML to refresh the proxies.
— On the fly in real-time.
— Ahead of time.

How to gather the datasets used for learning the
proxies.

— Passively, by exploiting data generated by the EMS.

— Actively, by using Monte-Carlo approaches.

How to best use the available ML techniques.
— Interpretability.
— Computational performance (learning and prediction).

How to use the learned proxies h, .. .
— Stand-alone mode.
— Together with “exact” simulator of f..,..

MichiganEngineering
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Case studies

» Reliability assessment.

- Baseline estimation.

- Estimating ensemble characteristics.

* Cluster-based chance-constrained optimization.
« Corrective model predictive control.

MichiganEngineering
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Baseline estimation

* The thermal mass of commercial buildings allows their
heating, ventilation and air conditioning (HVAC) systems
to be perturbed (slightly) without affecting occupant
comfort.

« This variability can be exploited to provide power system
ancillary services such as (slow) regulation.

A critical challenge in implementing such demand
response (DR) is the estimation of the power
consumption that would have occurred if there had been
no DR action.

— This is needed to determine if the requested control action was
enacted, for financial settlement.

— Referred to as the counterfactual baseline.

MichiganEngineering
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Fan power control

« Qur focus in on controlling the HVAC fan power.
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Tensor completion

* Tensor decomposition can be used for baseline
estimation.

— Tensor decomposition is an unsupervised data analysis
method that can find dominant patterns across multiple
dimensions, e.g. time, fan and day.

— Tensor completion is the closely related problem of imputing
missing or unobserved entries of a tensor.

— Our approach to tensor completion uses generalized
canonical polyadic (GCP) tensor decomposition, but other
approaches may be just as useful.

MichiganEngineering
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Tensor formation

* Fan power is arranged in a three-way time x fan x day
tensor.

— Correlations across fans and days become naturally
expressed as patterns across each of the three modes (time,
fan and day) and can be captured by tensor decomposition.

Day k <

¢ Y = L
E" (P11 Pz~ Pk Dink|
2 | |P2ik P22k " P2jk 7 Pank T X N slice (matrix) of
I 3 3 R oo fan power traces on day 1
| | Pk Pz 7 Pijk 0 Pink ,Cv‘
‘ : : : - : Is \:},'
S VLrik Przx 0 Prjk 0 Prakd \&//

>
Fanj=12,..,N Nk

MichiganEngineering
18/52




Low rank approximation

- Data from S — 1 baseline days and 1 event day are
Included in the tensor.

* The baseline power within the event window of the
event day (to be estimated) is treated as missing
measurements.

* These tensor entries are imputed by approximating
the known entries with a low-rank tensor.

— This low-rank approximation is the sum of r outer products.
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Example

* The vectors forming the approximation capture the
dominant underlying patterns.

Usmg 1-minute interval data Usmg 5-minute interval data
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Case studies

» Reliability assessment.

- Baseline estimation.

- Estimating ensemble characteristics.

* Cluster-based chance-constrained optimization.
« Corrective model predictive control.

MichiganEngineering
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Disaggregation of demand

* This section is based on Greg Ledva’'s PhD thesis.

« What is the total aggregate power consumption of air
conditioners (ACs) on a distribution feeder?

— This information is necessary for load control schemes that
use ACs.

« AC load availability is a gain in the control loop.

— Could provide a warning of vulnerability to “fault induced
delayed voltage recovery” (FIDVR).

— Knowing the weather-dependent proportion of the feeder
load may help better predict response to weather changes.

MichiganEngineering
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Measurements

« Total AC power could be obtained by placing sensors
on each device.
— Expensive.
— Requires extensive communications.
— Privacy issues.

» Better to use existing substation SCADA metering
and some knowledge of the physical system.

MichiganEngineering
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Disaggregation

* Dynamic fixed share (DFS) is used to separate
feeder active power into total residential AC load and
all other load (OL).

— This feeder-level AC load is composed of a large number of
small loads, each undergoing its thermostat cycling.
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Online disaggregation

* Feeder-level disaggregation is performed online
using measurement of active power that is time-
averaged over 1-minute intervals.
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Offline model construction

 Assume historical load data are available, and used
offline to construct models.
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Models

« The models can be created using a variety of
techniques.
— Use historical, device-level measurements along with
historical feeder and weather data.
« Two types of regression models were used to predict
OL demand: time-of-day regression and multiple
linear regression.

— The time-of-day regression is based on smoothing the OL
demand of a previous day.

— The multiple linear regression uses time of the week and
outdoor temperature.

MichiganEngineering
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AC demand models

» Three types of models were used to predict AC
demand:
— A multiple linear regression model.
— Linear time-invariant (LTI) system models.
— Linear time-varying (LTV) system models.

« The multiple linear regression uses time of the week
and lagged outdoor temperature raised to the powers
1...4. (Five features in total.)

MichiganEngineering
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LTI models

e The LTI models have the form:

~LTI,m _ ALTI,m~LTIm
T =A Ty

VAC,LTI,m _ ~LTI,m~LTIm
Yy =C Ly

— The state z; is 2-dimensional, one state gives the proportion
of ACs that are on and the other the proportion that are off.

— The state transition matrix AX71™ is a transposed Markov
transition matrix which captures the proportion of ACs that
maintain their current state or transition to the other state.

— Different models correspond to different ambient
temperatures.

MichiganEngineering
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LTV models

e The LTV models have the form:

LLTV,m _ ALTV,m oLTV,m
Liyq — Ay Ly

~AC,LTV.m CLTV,m ~ LTV m
Yt = Ly L

« Two models are used, based on different ways of
varying Ar"Vand ¢/ with (delayed) ambient
temperature.

MichiganEngineering
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Online learning algorithm

« The dynamic fixed share (DFS) algorithm uses the dynamic
mirror descent (DMD) algorithm.

« DMD uses a single model to generate predictions of the total
demand, a loss function to penalize errors between the
predicted and measured total demand, and a convex
optimization to adjust the model.

« DFS applies DMD separately to each model and uses a
weighting algorithm to associate a weight with each model, then
combines the predictions into an overall estimate.

0" = arg minn® (V4 (07),0) + D(6]|6™)

o
9211 — (I)m(eftn)

m A wi™ exp (— 0", ()
wt+1zw+(1—>\) T ( )

Zj:l wg eXp ( - ?7%(@?))

2 . m gm
011 = Z w1044
meM
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Example (1)

Active Power Demand (MW)

4 ! J
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Active Power Demand (MW)
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(b) OL Demand

Active Power Demand (MW)
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(¢) AC Demand

MichiganEngineering
32/52




Example (2)

» Better prediction-measurement matching leads to

larger weighting and more influence in the overall
prediction.

e GACMLR 4 $OLMLR _u $ACLTVI .4 OLMLR

—o— HACLTVZ 5114 $OLMLR g Other Models
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Case studies

» Reliability assessment.

- Baseline estimation.

- Estimating ensemble characteristics.

« Cluster-based chance-constrained optimization.
« Corrective model predictive control.

MichiganEngineering
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Energy hub background

« Consider energy hubs that incorporate electricity, heat,
natural gas and hydrogen.
— No electrical connection to the distribution grid.
— Self-powered by solar and wind resources.

— Minimal natural gas purchase under adverse weather conditions.

— Two forms of energy storage, batteries and hydrogen, the latter
being in conjunction with electrolysis and fuel-cell conversion.

z Battery |
Wind >
—+ Electricity Load
Solar L >
.|Electrolyzer— H2 Tank " Fuel Cell:
E2H
Gas » Reformer >
» Heat Load
» CHP
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Optimization background

« The energy hub planning problem is formally expressed as a
chance-constrained (CC) optimization problem, which explicitly
takes into account the stochasticity of renewable generation and
loads.

« The chance-constrained optimal planning problem is
subsequently reformulated as a robust counterpart problem.
This reformulation allows battery charging/discharging
complementarity to be expressed via an equivalent linear
representation.

» A cluster-based energy-hub design approach is proposed to
achieve more flexible control and to better manage the trade-off
between conservativeness and reliability.

MichiganEngineering
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CC formulation

« The uncertainty intrinsic in renewable resources requires careful
treatment. To explicitly take into account such stochasticity, the
optimal capacity design problem is formulated as a CC
optimization problem of the form:

(PO)  min J(x)

reEXCR"x

subject to Pr (d € A\ max gj(.cc 0) <0) >1—g¢

* ¢:random variables.
« x:decision variables.
« € pre-specified maximal probability of violation.

MichiganEngineering
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Formulation

« Control policies.

— Control policies are required to ensure hub components respond
appropriately to realizations of random renewable generation
infeed and load profiles.

* Robust counterpart problem formulation

— We propose two methods to improve the robust set formulation:

» Cutting-based approach.
* Principal component analysis (PCA)-based approach.

A~
pp\-‘ e
H. ‘"‘-Lz
@ (b) “

=

I

v

Pw

Pd
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Principal component analysis (PCA)

« PCA searches for a linear coordinate transformation of the
original random variables, and converts the data into a new set
of coordinates, i.e., the principal components (PCs).

« These PCs are uncorrelated and arranged in a descending
sense, such that the first few PCs capture most of the variations
in the data whereas the last few PCs describes near constant
relationships in the data.

« PCA is usually used for data reduction and reconstruction, by
neglecting most of the small PCs. However, we use PCA to
extract directions of PCs, and use this information to guide the
reshaping of the robust set and the clustering of random
trajectories in the multi-policy design framework.

MichiganEngineering
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Multi-policy design (1)

« Conservativeness: The robust counterpart approach
IS conservative.

- The main reason is that the control policy for battery
dispatching is not sufficiently flexible, since the affine
policy has to cope with a wide range of possible
realizations of the random variables.

* We explore a multi-policy design based on clustering
the random trajectories to reformulate the CC
problem.

MichiganEngineering
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Multi-policy design (2)

« Subdivide the total probability space into k disjoint
clusters (using PCA), and design for each cluster a
different nominal forecast trajectory and affine control
policy. The problem (PO) is transformed into:

(P3) min  J(x)

reX CR"=
subject to
Pr( max gjl-(a:',d) <0|deA)>1—F¢,
1=1,..., m
Pr (jzr?axmg?(ac,é) <0|deAy)>1—¢

MichiganEngineering
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Multi-policy design (3)

* We enforce that every specific scenario (realization of
the random trajectory) belongs to exactly one cluster:

Pr(d € A1) +Pr(d € Ag) +---+Pr(d € Ag) = 1.

» The total probability of constraint satisfaction is given
by:

ZPr max gJ$5)<0|5€A) Pr(d € A;) > 1 —c¢,

.....

where the 1 — ¢ lower bound is a direct consequence
of the structure of the chance-constraints in (P3).

MichiganEngineering
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Example

* The process of clustering results in a more flexible
control structure, which leads to less conservative

capacity design.

Type 4-Cluster | 2-Cluster | 1-Cluster
Pw (kW) 393.70 422.99 459.45
Ppy (kW) 0.73 1.35 0.00
Dy, (KW) 15.04 7.13 8.32
ep (kWh) 65.27 37.79 41.31
Pe1(KW) 0.37 9.26 12.07
My, (kg) 1.4818 2.1695 2.98
Di.(KW) 11.51 14.86 12.52
Dt (KW) 15.00 15.00 15.00
Pehp(KW) 15.00 15.00 15.00
Pean(KW) 8.16 8.57 7.83
P, (KW) 35.00 35.00 35.00
Cost (Million) $2.08 $2.18 $2.26

MichiganEngineering
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Case studies

» Reliability assessment.

- Baseline estimation.

- Estimating ensemble characteristics.

* Cluster-based chance-constrained optimization.
« Corrective model predictive control.

MichiganEngineering
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Aim

Address longer-term instability/viability concerns.

— Consider processes that evolve over 15-45 minutes.
« Transmission line and transformer overloading (thermal limits).
* Voltage collapse.

— Control updates occur every 2-5 minutes.

« Assume the system is transiently stable (recovers
from an initial fault).

» Assume control of generation (conventional and
renewable), FACTS (active and reactive power),
energy storage, load control, phase-shifting
transformers.

« Require computational tractability for large power
systems, ~5000 nodes.

MichiganEngineering
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Model predictive control

PAST

FUTURE
— A

] ——

- ——

Prediction Horizon

=

Reference Trajectory
Predicted Output
Measured Output
Predicted Control Input
Fast Control Input

1< B>
— —————+—+—F>
<} b
Sample Time
k k+1 Kk+2 k+p
*  Measurement of the system * Dynamics are introduced by:
state is provided by state — Conductor temperature.

estimation.

* Economic dispatch provides the
reference trajectory.
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Generation (the control variable is
the change in generation).

Energy storage state of charge.
Transformer tapping.
Long-term load recovery dynamics.
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Quadratic program formulation

« Standard optimal control form of objective function:

. . .
u[Z],l:%l,l_fl,M_l Hﬂﬁ[ fEk+MHS + Z {HZE — 0l + |ull] — uk—|—l||R}

* Penalize:
— High conductor temperatures.
— Voltages outside (high and low) limits

« Constraints:
— Conventional and renewable generation.
— Loads.
— Storage.
— Power balance (linear active and reactive power balance, variables are
A, AV).
— Transformers.
— Thermal models of line conductor temperature.

MichiganEngineering === ccmmmmms. o - ooommememamn i
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Large systems

« Typically only a subset of buses have significant influence over the flow
on a specific line.

« Use sensitivity of flow on a line to bus injections to establish relevant
controls.

1. Get device
injection limits
Sorted shift factors for line S00
|:|15 T T T T T T T T T
¥ 6. Retu?‘n
01r - 2. Sort buses control set
based on ISF
005¢ . Yes
v
0 No
o
£ 3. Take next bu.s
& 005 i from sorted list
=
W]
0.1 7 ) 4
4. Set injections 5. Balance
gl based on ISF injections
0.2 -
No
_|:|25 L 1 1 1 1 1 L L 1
D 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 No Yes Yes
Position in list

Sensitivities
Selection algorithm
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Model reduction

* The only nodes that need to be retained are:
— Controllable injections.
— End nodes of overloaded (or potentially overloaded) lines.
— Locations where voltage magnitudes may deviate outside limits.

« Kron (network) reduction can be used to eliminate unnecessary
buses.

« The network size can be changed at each MPC step to capture
cascading (or subsiding) effects.

MichiganEngineering
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Case study

e Californian network: 4259 nodes, 5867 lines/transformers, 2029
conventional and renewable generators, 1443 loads, and 10
grid-scale storage devices.

 Reduced network: 431 buses.

« Controls: 227 conventional generators, 89 renewable
generators, 333 loads, and 6 storage devices.

« Thermal models: 6 transmission lines.
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Results (1)
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Results (2)

25 ; :
- % = DC
~ A~ DC-red
- 0 = AC—red
2 - —
= |24
& h
5 g‘ h
= 1.5} Ll .
= 1
k= a
o n Stor hargin
5 &, . orage charging
[=]
= k I i . . r r : . .
R & " - +-DC
o
3 & & - A - DC-red
1.2 - @ = AC-red
O — Scheduled

0 5 10 15 20 25 30 35 40
Time after disturbance, k (min)

Load reduction

Storage charging (pu)

0 5 10 15 20 25 30 35 40
Time after disturbance, k (min)

MichiganEngineering

52/52



	Power System Applications of Artificial Intelligence (AI)
	Industrial development
	The evolution of AI
	Current research in AI
	Basis of machine learning
	Power system applications of AI (1)
	Power system applications of AI (2)
	Power system data
	Case studies
	Reliability assessment (1)
	Reliability assessment (2)
	Machine learning
	Machine learning considerations
	Case studies
	Baseline estimation
	Fan power control
	Tensor completion
	Tensor formation
	Low rank approximation
	Example
	Case studies
	Disaggregation of demand
	Measurements
	Disaggregation
	Online disaggregation
	Offline model construction
	Models
	AC demand models
	LTI models
	LTV models
	Online learning algorithm
	Example (1)
	Example (2)
	Case studies
	Energy hub background
	Optimization background
	CC formulation
	Formulation
	Principal component analysis (PCA)
	Multi-policy design (1)
	Multi-policy design (2)
	Multi-policy design (3)
	Example
	Case studies
	Aim
	Model predictive control
	Quadratic program formulation
	Large systems
	Model reduction
	Case study
	Results (1)
	Results (2)

