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Power system applications of AI (1)
• Load forecasting (short- and long-term).
• Short-term forecasting of wind and solar.
• Fault diagnosis and condition monitoring.

– Generators, transformers, high-voltage circuit breakers, 
power electronic converters.

• Security/reliability assessment.
– Moving beyond N-1 reliability.
– Decision-making at scale and high complexity.
– Stability assessment.

• Identifying cyber and physical attacks.
– Intrusion detection in power system information networks.

• Electricity markets.
– Determine bidding strategies for energy markets.
– Assess market power.
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Power system applications of AI (2)
• Feedback controls.

– Generator and motor controls.
– Voltage/reactive power controls.
– Automatic generation control (AGC).
– Microgrids and multi-energy systems.
– Estimating ensemble characteristics.
– Baseline estimation.

• Consumers.
– Thermostats that learn occupancy patterns.
– Other applications and opportunities?
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Power system data
• Vast numbers of participants create vast amounts of 

highly distributed data.
• Heterogeneous (multiple forms, multiple time scales).
• Asynchronous.
• Noisy.
• Incomplete.
• Low value density.

• Difficulties in collecting, storing, processing, mining.
• Privacy concerns.
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Case studies
• Reliability assessment.
• Baseline estimation.
• Estimating ensemble characteristics.
• Cluster-based chance-constrained optimization.
• Corrective model predictive control.

– Not actually AI but a competing technology.
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Reliability assessment (1)
• This section is based on notes from Louis Wehenkel.
• Requirement:

– At sub-second temporal resolution, balance generation, 
consumption and storage, whilst satisfying network 
constraints, in spite of various threats.

• Threats:
– Unanticipated variations of generation and/or demand, 

weather conditions.
– Component failures, human errors, adversarial attacks.

• Problems to avoid:
– Component overloads, voltage and/or frequency excursions.
– Cascading overloads, instabilities, blackouts.

• Aim:
– Optimization and control closer to real-time.
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Reliability assessment (2)
Every 5 minutes, for the real-time system state      , assess 
the risk induced by contingencies.
• Based on data and models:

– : set of contingencies and their probabilities.
– : measure of the severity of contingency    in state      .

• Assess the expected impact of possible contingencies:
–

- expected cost of service interruptions.
–

- probability of large service interruptions.
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Machine learning
• Background:

– The evaluation of the contingency response function              
is generally computationally expensive.

– Even so, this function is evaluated as often as possible by the 
TSO, yielding growing datasets

• Supervised machine learning:
– From a sample of input-output pairs                     , we can 

learn a function        such that                 is small on average.
• Application to real-time reliability assessment:

– Learn a regression proxy:
– Learn a classifier proxy:

• The underlying assumptions are:
– -proxies are much faster to evaluate than                 .
– It is possible to learn sufficiently accurate   -proxies.
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Machine learning considerations
• How often to apply ML to refresh the proxies.

– On the fly in real-time.
– Ahead of time.

• How to gather the datasets used for learning the 
proxies.
– Passively, by exploiting data generated by the EMS.
– Actively, by using Monte-Carlo approaches.

• How to best use the available ML techniques.
– Interpretability.
– Computational performance (learning and prediction).

• How to use the learned proxies        .
– Stand-alone mode.
– Together with “exact” simulator of       . 
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Case studies
• Reliability assessment.
• Baseline estimation.
• Estimating ensemble characteristics.
• Cluster-based chance-constrained optimization.
• Corrective model predictive control.
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Baseline estimation
• The thermal mass of commercial buildings allows their 

heating, ventilation and air conditioning (HVAC) systems 
to be perturbed (slightly) without affecting occupant 
comfort.

• This variability can be exploited to provide power system 
ancillary services such as (slow) regulation.

• A critical challenge in implementing such demand 
response (DR) is the estimation of the power 
consumption that would have occurred if there had been 
no DR action.
– This is needed to determine if the requested control action was 

enacted, for financial settlement.
– Referred to as the counterfactual baseline.
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Fan power control
• Our focus in on controlling the HVAC fan power.
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Tensor completion
• Tensor decomposition can be used for baseline 

estimation.
– Tensor decomposition is an unsupervised data analysis 

method that can find dominant patterns across multiple 
dimensions, e.g. time, fan and day.

– Tensor completion is the closely related problem of imputing 
missing or unobserved entries of a tensor.

– Our approach to tensor completion uses generalized 
canonical polyadic (GCP) tensor decomposition, but other 
approaches may be just as useful.
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Tensor formation
• Fan power is arranged in a three-way                 

tensor.
– Correlations across fans and days become naturally 

expressed as patterns across each of the three modes (time, 
fan and day) and can be captured by tensor decomposition.

18/52



Low rank approximation
• Data from baseline days and 1 event day are 

included in the tensor.
• The baseline power within the event window of the 

event day (to be estimated) is treated as missing 
measurements.

• These tensor entries are imputed by approximating 
the known entries with a low-rank tensor.
– This low-rank approximation is the sum of r outer products.
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Example
• The vectors forming the approximation capture the 

dominant underlying patterns.

20/52



Case studies
• Reliability assessment.
• Baseline estimation.
• Estimating ensemble characteristics.
• Cluster-based chance-constrained optimization.
• Corrective model predictive control.
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Disaggregation of demand
• This section is based on Greg Ledva’s PhD thesis.
• What is the total aggregate power consumption of air 

conditioners (ACs) on a distribution feeder?
– This information is necessary for load control schemes that 

use ACs.
• AC load availability is a gain in the control loop.

– Could provide a warning of vulnerability to “fault induced 
delayed voltage recovery” (FIDVR).

– Knowing the weather-dependent proportion of the feeder 
load may help better predict response to weather changes.
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Measurements
• Total AC power could be obtained by placing sensors 

on each device.
– Expensive.
– Requires extensive communications.
– Privacy issues.

• Better to use existing substation SCADA metering 
and some knowledge of the physical system.
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Disaggregation
• Dynamic fixed share (DFS) is used to separate 

feeder active power into total residential AC load and 
all other load (OL).
– This feeder-level AC load is composed of a large number of 

small loads, each undergoing its thermostat cycling.
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Online disaggregation
• Feeder-level disaggregation is performed online 

using measurement of active power that is time-
averaged over 1-minute intervals.
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Offline model construction
• Assume historical load data are available, and used 

offline to construct models.
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Models
• The models can be created using a variety of 

techniques.
– Use historical, device-level measurements along with 

historical feeder and weather data.
• Two types of regression models were used to predict 

OL demand: time-of-day regression and multiple 
linear regression.
– The time-of-day regression is based on smoothing the OL 

demand of a previous day.
– The multiple linear regression uses time of the week and 

outdoor temperature.
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AC demand models
• Three types of models were used to predict AC 

demand:
– A multiple linear regression model.
– Linear time-invariant (LTI) system models.
– Linear time-varying (LTV) system models.

• The multiple linear regression uses time of the week 
and lagged outdoor temperature raised to the powers 
1…4. (Five features in total.)
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LTI models
• The LTI models have the form:

– The state      is 2-dimensional, one state gives the proportion 
of ACs that are on and the other the proportion that are off.

– The state transition matrix              is a transposed Markov 
transition matrix which captures the proportion of ACs that 
maintain their current state or transition to the other state.

– Different models correspond to different ambient 
temperatures.
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LTV models
• The LTV models have the form:

• Two models are used, based on different ways of 
varying         and          with (delayed) ambient 
temperature.
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Online learning algorithm
• The dynamic fixed share (DFS) algorithm uses the dynamic 

mirror descent (DMD) algorithm.
• DMD uses a single model to generate predictions of the total 

demand, a loss function to penalize errors between the 
predicted and measured total demand, and a convex 
optimization to adjust the model.

• DFS applies DMD separately to each model and uses a 
weighting algorithm to associate a weight with each model, then 
combines the predictions into an overall estimate.
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Example (1)
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Example (2)
• Better prediction-measurement matching leads to 

larger weighting and more influence in the overall 
prediction.
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Case studies
• Reliability assessment.
• Baseline estimation.
• Estimating ensemble characteristics.
• Cluster-based chance-constrained optimization.
• Corrective model predictive control.
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Energy hub background
• Consider energy hubs that incorporate electricity, heat, 

natural gas and hydrogen. 
– No electrical connection to the distribution grid.
– Self-powered by solar and wind resources.
– Minimal natural gas purchase under adverse weather conditions.
– Two forms of energy storage, batteries and hydrogen, the latter 

being in conjunction with electrolysis and fuel-cell conversion.
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Optimization background
• The energy hub planning problem is formally expressed as a 

chance-constrained (CC) optimization problem, which explicitly 
takes into account the stochasticity of renewable generation and 
loads. 

• The chance-constrained optimal planning problem is 
subsequently reformulated as a robust counterpart problem. 
This reformulation allows battery charging/discharging 
complementarity to be expressed via an equivalent linear 
representation. 

• A cluster-based energy-hub design approach is proposed to 
achieve more flexible control and to better manage the trade-off 
between conservativeness and reliability.
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CC formulation
• The uncertainty intrinsic in renewable resources requires careful 

treatment. To explicitly take into account such stochasticity, the 
optimal capacity design problem is formulated as a CC 
optimization problem of the form:

• : random variables.
• : decision variables.
• : pre-specified maximal probability of violation.
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Formulation
• Control policies.

– Control policies are required to ensure hub components respond 
appropriately to realizations of random renewable generation 
infeed and load profiles.

• Robust counterpart problem formulation
– We propose two methods to improve the robust set formulation:

• Cutting-based approach.
• Principal component analysis (PCA)-based approach.
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Principal component analysis (PCA)
• PCA searches for a linear coordinate transformation of the 

original random variables, and converts the data into a new set 
of coordinates, i.e., the principal components (PCs).

• These PCs are uncorrelated and arranged in a descending 
sense, such that the first few PCs capture most of the variations 
in the data whereas the last few PCs describes near constant 
relationships in the data.

• PCA is usually used for data reduction and reconstruction, by 
neglecting most of the small PCs. However, we use PCA to 
extract directions of PCs, and use this information to guide the 
reshaping of the robust set and the clustering of random 
trajectories in the multi-policy design framework.
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Multi-policy design (1)
• Conservativeness: The robust counterpart approach 

is conservative. 

• The main reason is that the control policy for battery 
dispatching is not sufficiently flexible, since the affine 
policy has to cope with a wide range of possible 
realizations of the random variables. 

• We explore a multi-policy design based on clustering 
the random trajectories to reformulate the CC 
problem. 
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Multi-policy design (2)
• Subdivide the total probability space into k disjoint 

clusters (using PCA), and design for each cluster a 
different nominal forecast trajectory and affine control 
policy. The problem (P0) is transformed into:
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Multi-policy design (3)
• We enforce that every specific scenario (realization of 

the random trajectory) belongs to exactly one cluster:

• The total probability of constraint satisfaction is given 
by:

• where the          lower bound is a direct consequence 
of the structure of the chance-constraints in (P3). 
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Example
• The process of clustering results in a more flexible 

control structure, which leads to less conservative 
capacity design.
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Case studies
• Reliability assessment.
• Baseline estimation.
• Estimating ensemble characteristics.
• Cluster-based chance-constrained optimization.
• Corrective model predictive control.
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Aim
• Address longer-term instability/viability concerns.

– Consider processes that evolve over 15-45 minutes.
• Transmission line and transformer overloading (thermal limits).
• Voltage collapse.

– Control updates occur every 2-5 minutes.
• Assume the system is transiently stable (recovers 

from an initial fault).
• Assume control of generation (conventional and 

renewable), FACTS (active and reactive power), 
energy storage, load control, phase-shifting 
transformers.

• Require computational tractability for large power 
systems, ~5000 nodes.
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Model predictive control

• Measurement of the system 
state is provided by state 
estimation.

• Economic dispatch provides the 
reference trajectory.

• Dynamics are introduced by:
– Conductor temperature.
– Generation (the control variable is 

the change in generation).
– Energy storage state of charge.
– Transformer tapping.
– Long-term load recovery dynamics.
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Quadratic program formulation
• Standard optimal control form of objective function:

• Penalize:
– High conductor temperatures.
– Voltages outside (high and low) limits

• Constraints:
– Conventional and renewable generation.
– Loads.
– Storage.
– Power balance (linear active and reactive power balance, variables are

).
– Transformers.
– Thermal models of line conductor temperature.
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Large systems
• Typically only a subset of buses have significant influence over the flow 

on a specific line.
• Use sensitivity of flow on a line to bus injections to establish relevant 

controls.

Sensitivities
Selection algorithm
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Model reduction
• The only nodes that need to be retained are:

– Controllable injections.
– End nodes of overloaded (or potentially overloaded) lines.
– Locations where voltage magnitudes may deviate outside limits.

• Kron (network) reduction can be used to eliminate unnecessary 
buses.

• The network size can be changed at each MPC step to capture 
cascading (or subsiding) effects.
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Case study
• Californian network: 4259 nodes, 5867 lines/transformers, 2029 

conventional and renewable generators, 1443 loads, and 10 
grid-scale storage devices.

• Reduced network: 431 buses.
• Controls: 227 conventional generators, 89 renewable 

generators, 333 loads, and 6 storage devices.
• Thermal models: 6 transmission lines.
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Results (1)

Temperature overload

Maximum apparent power flow
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Results (2)

Load reduction

Storage charging
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