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Hands-on Exercise:
Machine Learning for Power Systems

Prepared by Andreas Venzke, Jochen Stiasny,
and Spyros Chatzivasileiadis

February 10, 2020

1 Introduction

This assignment has two goals. First, to implement a Decision Tree and a
Neural Network that can assess the security of a power system, i.e. determine
if any given operating point is safe or unsafe. Second, to get familiar with
physics-informed neural networks.

The objectives to be achieved at the end of the assignment are the fol-
lowing;:

e Decision Trees and Neural Networks for Power System Security Assess-
ment

Get familiar with the database

— Implement a Decision Tree

— Implement a Neural Network

Investigate the impact of different properties of Neural Networks
on the classification accuracy

— Compare the accuracy of the Decision Tree vs. the accuracy of
the Neural Network
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e Physics-Informed Neural Networks

— Get familiar with the code

— Identify strengths and opportunities for improvements (aka short-
comings :) ) of the physics-informed neural networks for continu-
ous time

2 Preparation

Make sure you have all the required modules installed
1. scikit-learn
2. tensorflow
3. matplotlib
4. pyDOE
5. Examples of commands:

e if you run Python on Mac: pip install PackageName in a ter-
minal

e if you are on Windows with Anaconda, then conda install PackageName
in Anaconda Prompt with “Run as an Administrator” (not the
Windows command prompt)

3 Tasks

Note: All files and code can be downloaded in a single file from
https://www.chatziva.com/downloads.html

3.1 Decision Trees (DT) and Neural Networks (NN)
for Power System Security Assessment

1. Download the training database
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Database prepared by Florian Thams, Andreas Venzke, and Lejla Halil-
basic. See the end of the document for more information about the
database.

2. Download the python .py file DT_and_NN_Security_Assessment_14bus.py

3. Go through the code, try to understand it, and add a comment to every
command to explain its function (you can also run it, this should help
your understanding).

4. Train a decision tree and a neural network and evaluate their accuracy.

5. Is the database balanced? Is accuracy a sufficient metric? If not,
evaluate the different performance metrics, e.g. Matthews correlation
coeflicient.

6. Experiment with different neural network topologies and activation
functions (e.g. ReLU, sigmoid, etc); Report your findings on how this
impacts the accuracy metrics.

7. Compare the performance metrics for the decision tree and the neural
network you trained. Which has the best performance? What are the
advantages and disadvantages of each method?

Optional tasks:

8. Experiment with the different datasets, after you have trained your first
decision tree and neural network for only N-1 security and for both N-1
security and small signal stability).

9. The decision tree and the neural network are bound to have some clas-
sification errors. Implement a N-1 AC security assessment to validate
parts of the database and check if there are any misclassifications.

3.2 Physics-Informed Neural Networks (PINN)
1. Download the python .py file PINN_inference_swing_equation.py

2. Go through the code, try to understand it, and add a comment to every
command to explain its function (you can also run it, this should help
your understanding). The following references might (or might not) be
helpful:
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e G. S. Misyris, A. Venzke, S. Chatzivasileiadis, Physics-Informed
Neural Networks for Power Systems. 2019. https://arxiv.org/
pdf/1911.03737.pdf

e M. Raissi, P. Perdikaris, and G. Karniadakis, Physics-Informed
neural networks: A deep learning framework for solving forward
and inverse problems involving nonlinear partial differential equa-
tions”, Journal of Computational Physics, vol.378, pp. 686-707,
2019 https://arxiv.org/abs/1711.10561

Set the number of collocation points to Nf=100. How is the PINN
performance and the computation time?

Set the number of collocation points to Nf=1000. How it the PINN
performance compared to the previous task?

Optional: If you have a powerful laptop, set the number of collocation
points to Nf=10’000 (this will take some time, maybe 1 hour). How it
the PINN performance now?

General Questions

. The DT and NN in Section 3.1 perform a different function from the

NN in Section 3.2. What is their main difference? (hint: think about
the outputs)

. What was the size of the external training data you needed for the

training of the Decision Trees and the Neural Networks in Section 3.1
and what was the size of these external data in in Section 3.27 In
general, would you expect that a classification or a regression neural
network would require more training data?

. What are your conclusions about the impact of a balanced training

database on the DT and NN training?

. What are the benefits and the shortcomings of Physics-Informed Neural

Networks? Where should future research focus, in order to remove the
barriers for real-life application of these methods?
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4 Database

You will receive two datasets that were prepared for the IEEE 14-bus system.
You are welcome to use these datasets for your future studies, your work or
your research. If you use them please cite the following paper:

F. Thams, A. Venzke, R. Eriksson and S. Chatzivasileiadis, ”Efficient
Database Generation for Data-Driven Security Assessment of Power Sys-

tems,” in IEEFE Transactions on Power Systems, vol. 35, no. 1, pp.
30-41, Jan. 2020. doi: 10.1109/TPWRS.2018.2890769

and /or

L. Halilbasic, F. Thams, A. Venzke, S. Chatzivasileiadis, P. Pinson.
Data-driven Security-Constrained AC-OPF for Operations and Markets.
In 20th Power Systems Computation Conference, Dublin, Ireland, pages
1-7, June 2018.

4.1 Difference between the two datasets

Database OPF with VG: Q-limits are not enforced. For this dataset,
we run the standard power flow algorithm (provided by Matpower), which
does not check if the PV buses violate their reactive power limits.

Database OPF without VG: Q-limits are enforced. For this dataset,
we run a power flow algorithm (again provided by Matpower), which checks
if the PV buses violate their reactive power limits. If a PV bus (which is
usually a generator bus) injects reactive power that exceeds the Q-limits of
the generator, the PV-bus is transformed to a PQ-bus, with Q) = Qjmit, and
the voltage is allowed to vary. This is a more realistic implementation of the
power flow, as in reality, if the determined reactive power cannot be provided,
then the voltage will necessarily change.

4.2 Contents of each database
Database OPF with VG: 49’615 points, Q-limits not enforced

Database OPF without VG: 675’367 points, Q-limits enforced
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For every database, we assessed each operating point for both N-1 security
and small signal stability. For more information on the method, please see

[1].

N-1 security: We run a power flow considering the base case and the single
outage of each component. If any of the power flow cases violate component
limits (line flow limits or voltage limits) the setpoint is classified as N-1
insecure. Considered contingencies include all line outages (except for lines
7-8 and 6-13 that make the problem infeasible, i.e. 14-bus system is not N-1
secure for these outages).

Small-signal stability: We consider a full dynamic model for each gen-
erator (6th-order), including governor, Automatic Voltage Regulator (AVR
type I, 3-states), and Power System Stabilizer (PSS). We set the stability
limit at 3% damping ratio. All operating points with a damping ratio below
3% are considered insecure. For more info and the data assumed, please see:

[1].
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